

Habitat Requirements

- •Well oxygenated and cold water
- •Streambed material (substrate) can range from bedrock to mud. Sufficient areas of gravel are necessary for spawning
- •Springs or cooler water temperatures below a summer thermocline are required for brook trout to inhabit lakes/ponds
- •Stream Opportunists: Found from high gradient mountain streams to slow moving meadow brooks

Food Sources

- •Primarily feeds on all life stages of aquatic insects (e.g. stonefly, caddisfly, mayfly)
- •Smaller trout will feed on zooplankton
- •Other fish make up a small part of the diet

Spawning

•Temperature driven

- Wild fish-September thru October
- Hatchery fish-November thru early December
- •Brook trout seek cooler, well oxygenated gravel substrate
- •Females dig small nests called "redds"
- •Eggs and milt are deposited together in the redd
- •Very stressful to males and females

Life Cycle

- •After fertilization, development occurs inside the egg
- •Once fully developed, the trout hatches (hatch time is temperature dependent)
- •Newly hatched brook trout (sac fry/alevin) use their yolk sacs for food
- •Upon yolk sac absorption, the brook trout fry swim up from the substrate in search of food and to establish territories
- •Growth rates are significantly dependent on habitat characteristics (e.g. food availability, water temperature)

Threats to Brook Trout

- Urbanization
- Sedimentation
- Stream Fragmentation
 - Dams
 - Poor Stream Crossings
- Non-Native fish
- Acid Deposition
- Overfishing

Poor Riparian Zone Management

Extreme vegetation removal along waterbodies can:

- •Increase water temperature
- •Increase pollution from runoff
- Decrease buffering capacity
- •Reduce streambank stability and increase sedimentation
- •Reduce cover for fish and wildlife

Barriers to Dispersal

- •Poorly designed crossings can limit passage of aquatic species
 - If crossings are undersized, there is a greater chance of becoming perched or blown out

 Direct mortality to turtles and amphibians can occur when they must cross roads

Acid Deposition

Primary Sources: Fossil fuel combustion and automobile exhaust

- •Brook trout are very sensitive to pH fluctuations in water
- •Mortality usually occurs when pH levels descend close to 5.0 (juvenile fish are even less tolerant)
- •Most of New Hampshire's waters have poor acid buffering capacities (low levels of alkalinity)
- •Acid rain can leech metals from the sediment further impacting brook trout
- •Snow melt can deliver an acid shock to aquatic systems

The Eastern Brook Trout Joint Venture

Wild Brook Trout Management

Objectives:

- Establish areas that support wild trout populations at sufficient densities (≥15 kg/ha [13 lbs/acre])
- Provide angling opportunities without sustaining or supplementing the fisheries with stocked trout
- More restrictive regulations to protect the wild trout population

Management of Stocked Trout

Purpose: To sustain or supplement recreational fishing opportunities in suitable waters

- NHFG annually stocks approximately 1 million trout into New Hampshire's lakes, ponds, and streams
- 318 lakes/ponds and 296 rivers/streams receive brook, rainbow and/or brown trout

Hatchery Techniques

Egg Taking

Egg Hatching

Egg Incubation

Fish Growth and Holding

Survey Techniques for Brook Trout

- Backpack Electrofishing
- Netting
- Tagging
- Creel Surveys

Brook trout assessments and Natural Resource Inventories.

Wild Brook Trout Distribution through 2015

Includes all statewide sampling techniques- past and present

Stream crossing surveys by towns

Habitat Improvement

Streambank re-vegetation

Habitat enhancement and restoration

Dam removal

Crossing removal/replacement

Middle Farrer Brook culvert removal November 6—7, 2007

Pre-removal – looking upstream

Post-removal – looking upstream

Horseshoe Brook culvert replacement May 6—10, 2013

Pre-replacement – looking upstream October

Post-replacement – looking upstream 101y 2013

How Can I Help?

- Support watershed education in your community.
 - Help implement the Water Education Plan
 - Take part in Watershed Congresses
- Teach local students what is a conservation commission?
- Sponsor Citizen Science & intern opportunities.
 - Invasive species inventories
 - Natural Resource Inventory/EBT studies
 - Riparian buffer establishment/maintenance
- Support a Watershed/Trout in the Classroom School.
 - Be a liaison and egg deliverer
 - Fund tank and chiller supplies
 - Be a resource specialist to help with field days at the river
 - Provide resource studies and data

A healthy local stream is the reward for us all

Judy Tumosa, Watershed Education Specialist
NH Fish and Game Department
#603-271-0456, judy.l.tumosa@wildlife.nh.gov

Dianne Timmins, Fisheries Biologist
NH Fish and Game Department
Lancaster Field Office, Region 1